Math 210C Lecture 4 Notes

Daniel Raban

April 8, 2019

1 Noether's Normalization Lemma and The Nullstellensatz

1.1 Noether's normalization lemma

Let K be an algebraically closed field, $n \geq 1$, and $R = K[X_1, \ldots, x_n]$. We had a map $V: \mathscr{P}(R) \to \mathscr{P}(K^n)$ defined by $V(S) = \{a = (a_1, \ldots, a_n) \in K^n : f(a) = 0 \,\forall f \in S\}$, the vanishing locus of S. We also had a map $I: \mathscr{P}(K^n) \to \mathscr{P}(R)$ defined by $I(Z) = \{f \in R : f(a) = 0 \,\forall a \in Z\}$. The image of I is the radical ideals of I.

Recall that a subset Z of K^n is algebraic if Z = B(S) for some $S \subseteq R$, and we said last time that the algebraic sets form the closed sets in a topology on K^n the Zariski topology. we write \mathbb{A}^n_K for K^n with this topology. $\mathfrak{m} = (x_1 - a_1, \dots, x_n - a_n)$, where $a_1, \dots, a_n \in K$, is a maximal ideal with vanishing locus $V(\mathfrak{m}) = \{(a_1, \dots, a_n)\}$. So points are closed. We also showed that $I(\{a_1, \dots, a_m\}) = (x_1 - a_1, \dots, x_n - a_n)$.

Lemma 1.1 (Noether's normalization lemma). Let F be a field. Let A be a finitely generated commutative F-algebra with generators $z_1, \ldots, z_r \in A$. Then there exist $s \leq r$ and F-algebraically independent elements $t_1, \ldots, t_s \in A$ such that A is integral over $F[t_1, \ldots, t_s]$.

Proof. Proceed by induction on r. If r=0, we are done. Suppose $r\geq 1$. If z_1,\ldots,z_r are algebraically independent over F, we are done, so assume not. So there exists some nonzero $f\in F[x_1,\ldots,x_r]$ such that $f(z_1,\ldots,z_r)=0$. Let d be the degree of f (i.e. the maximum of degrees of monomials, where the degree of a monomial is the sum of the degrees in each x_i). Without loss of generality, we may assume f is nonconstant as a polynomial in x_r . Let $g(x_1,\ldots,x_r)=f(x_1+x_r^{d+1},x_2+x_r^{(d+1)^2},\ldots,x_{r-1}+x_r^{(d+1)^{r-1}},x_r)\in F[x_1,\ldots,x_1]$. f is a sum of monomials, and for each monomial we get a sum of monomials contributing to g. Exactly one of these has the form (nonzero const. in F) $\cdot x_r^{\text{some power}}$. Since f has degree f and f and f and f are degree degree and degree degree in f and the degree of the highest degree monomial f with f are lower degree in f and the degree of the highest degree monomial f with f are lower degree terms in f. In other words, f are f and f are degree terms in f are done of the degree terms in f.

Set $w_i = z_i - z_r^{(d+1)^i}$ for $1 \le i \le r-1$. Then $g(w_1, \ldots, w_r, z_r) = f(z_1, \ldots, z_r) = 0$. So z_r is integral over $B = F[w_1, \ldots, w_{r-1}]$. By induction, there exists $s \le r-1$ and elements

 $t_1, \ldots, t_s \in B$ such that t_1, \ldots, t_s are F-algebraically independent and B is integral over $F[t_1, \ldots, t_s]$. $A = B[z_r]$ is integral over B, so A is integral over $F[t_1, \ldots, t_s]$.

1.2 The weak Nullstellensatz

Theorem 1.1 (weak Nullstellensatz). Let K be algebraically closed. Every maximal ideal of $R = K[x_1, \ldots, x_n]$ has the form $(x_1 - a_1, \ldots, x_n - a_n)$ with $a_1, \ldots, a_n \in K$.

Proof. Let $\mathfrak{m} \subseteq R$ be a maximal ideal. Then $L = R/\mathfrak{m}$ is a field. L is a field extension of K and is finitely generated as a K-algebra (generated by images of x_1, \ldots, x_n). By Noether's normalization lemma, there exist algebraically independent $t_1, \ldots, t_s \in L$ (over K) such that L is integral over $K[t_1, \ldots, t_s]$. If $s \ge 1$, then t_1^{-1} is integral over $K[t_1, \ldots, t_s]$, which is not so. So s = 0, and L/K is therefore algebraic. Since K is algebraically closed, L = K.

Let a_i be the image of x_i under the quotient map $R \to R/\mathfrak{m} = K$. Then $x_i - a_i \in \mathfrak{m}$ for all i. So $\mathfrak{m} \subseteq (x_1 - a_1, \ldots, x_n - a_n)$, so they are equal, as the latter ideal is maximal. \square

1.3 Hilbert's Nullstellensatz

Theorem 1.2 (Hilbert's Nullstellensatz). I and V provide mutually inverse, inclusion reversing bijections {radical ideals of $K[x_1, ..., x_n]$ } \leftrightarrow {algebraic sets in \mathbb{A}^n_K }.

Proof. Check that I and V are inclusion reversing. If $Z \subseteq \mathbb{A}^n_K$, then $V(I(Z)) \supseteq \overline{Z} \supseteq Z$. If $Z = V(\mathfrak{a})$ for some ideal $\mathfrak{a} \subseteq R$, then $V(I(Z)) = V(I(V(\mathfrak{a}))) \subseteq V(\mathfrak{a}) = Z$. Since $Z \subseteq V(I(Z))$, we get V(I(Z)) = Z.

If \mathfrak{a} is an ideal of R, then $I(V(\mathfrak{a})) \supseteq \sqrt{\mathfrak{a}}$ from what we have already said. It remains to show that $I(V(\mathfrak{a})) \subseteq \sqrt{\mathfrak{a}}$ for all ideals $|mfa \subseteq R|$. Let $f \in I(V(\mathfrak{a}))$. R is noetherian, so $\mathfrak{a} = (g_1, \ldots, g_k)$, where $g_1, \ldots, g_k \in R$. Let g be an indeterminate, so $R[g] = K[x_1, \ldots, x_n, y]$. Let $J = \mathfrak{a}R[g] + (1 - fg) = (g_1, \ldots, g_k, 1 - fg)$. If $g \in V(\mathfrak{a}) = V(g_1, \ldots, g_k)$, then (1 - fg)(g) = 1 - f(g)g = 1 for all $g \in V(\mathfrak{a})$. Then $f(g) = 0 \subseteq A_K^{n+1}$. We will finish this proof next time.